首頁技術文章正文

Python培訓:使用Pandas提供的方法操作索引

更新時間:2022-09-05 來源:黑馬程序員 瀏覽量:

  雖然DataFrame操作索引能夠滿足基本數據查看請求,但是仍然不夠靈活。為此,Pandas庫中提供了操作索引的方法來訪問數據,具體包括:

  ?loc:基于標簽索引(索引名稱,如a、b等),用于按標簽選取數據。當執(zhí)行切片操作時,既包含起始索引,也包含結束索引。

  ?loc:基于位置索引(整數索引,從0到length-1),用于按位置選取數據。當執(zhí)行切片操作時,只包含起始索引,不包含結束索引。

  iloc方法主要使用整數來索引數據,而不能使用字符標簽來索引數據。而loc方法恰恰相反,它只能使用字符標簽來索引數據,而不能使用整數來索引數據。不過,當DataFrame對象的行索引或列索引使用的是整數時,則其就可以使用整數來索引。

  假設,現(xiàn)在有一個DataFrame對象,具體代碼如下。

In [39]: arr=np.arrange(16) .reshape(4, 4)
         dataframe_obj=pd.DataFrame(arr, columns=['a', 'b', 'c', 'd'])
         dataframe_obj
Out[39]:
    a   b   c   d
0   0   1   2   3
1   4   5   6   7
2   8   9   10  11
3   12  13  14  15

  接下來,我們通過一段示例程序來演示如何使用上述方法來獲取DataFrame中多列的數據,具體代碼如下。

In [40]: dataframe_obj.loc[:, ["c", "a"]]
In [41]: dataframe_obj.iloc[:, [2,0]]

  它們兩個輸出的結果一樣,具體如下:

    c   a
0   2   0
1   6   4
2   10  8
3   14  12

  還可以通過loc方法和iloc方法使用花式索引來訪問數據,具體代碼如下。

In [43]: dataframe_obj.loc[1:2, ['b', 'c']]
In [44]: dataframe_obj.iloc[1:3, [1, 2]]

  它們兩個輸出的結果也是一樣的,具體如下:

    b    c
1   5    6
2   9    10


分享到:
在線咨詢 我要報名
和我們在線交談!