如果不是有放回的抽樣,那么每棵樹的訓練樣本都是不同的,都是沒有交集的,這樣每棵樹都是“有偏的”,都是絕對“片面的”(當然這樣說可能不對),也就是說每棵樹訓練出來都是有很大的差異的;而隨機森林最后分類取決于多棵樹(弱分類器)的投票表決。查看全文>>
K Nearest Neighbor算法又叫KNN算法,這個算法是機器學習里面一個比較經(jīng)典的算法, 總體來說KNN算法是相對比較容易理解的算法,如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數(shù)屬于某一個類別,則該樣本也屬于這個類別。查看全文>>
采用由淺入深,層層遞進的講解方式, 讓你輕松掌握opencv的使用, 使用opencv對圖像進行炫酷的變換,特征提取等。10小時學會opencv, 帶您領略樸素圖像處理的魅力風采查看全文>>
ORB算法在opencv中實現(xiàn)方法,?在OPenCV中實現(xiàn)ORB算法,使用的是:查看全文>>
BRIEF是一種特征描述子提取算法,并非特征點的提取算法,一種生成二值化描述子的算法,不提取代價低,匹配只需要使用簡單的漢明距離(Hamming Distance)利用比特之間的異或操作就可以完成。查看全文>>
SIFT和SURF算法是受專利保護的,在使用他們時我們是要付費的,但是ORB(Oriented Fast and Rotated Brief)不需要,它可以用來對圖像中的關鍵點快速創(chuàng)建特征向量,并用這些特征向量來識別圖像中的對象。查看全文>>